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Abstract. The interiors of neutron stars reach densities and temperatures beyond the limits
of terrestrial experiments, providing vital laboratories for probing nuclear physics. While
the star’s interior is not directly observable, its pressure and density determine the star’s
macroscopic structure which affects the spectra observed in telescopes. The relationship
between the observations and the internal state is complex and partially intractable, presenting
difficulties for inference. Previous work has focused on the regression from stellar spectra of
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parameters describing the internal state. We demonstrate a calculation of the full likelihood
of the internal state parameters given observations, accomplished by replacing intractable
elements with machine learning models trained on samples of simulated stars. Our machine-
learning-derived likelihood allows us to perform mazimum a posteriori estimation of the
parameters of interest, as well as full scans. We demonstrate the technique by inferring stellar
mass and radius from an individual stellar spectrum, as well as equation of state parameters
from a set of spectra. Our results are more precise than pure regression models, reducing the
width of the parameter residuals by 11.8% in the most realistic scenario. The neural networks
will be released as a tool for fast simulation of neutron star properties and observed spectra.
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1 Introduction

Neutron stars are valuable astrophysical laboratories for studying matter under extreme
conditions. With masses generally between 1 to 2 Mg, and radii between 10 and 15 km, the
inner regions of these neutron-rich stars can reach density regimes well beyond those accessible
in terrestrial laboratories. Matter at such high densities can potentially experience transitions
to stable but unusual states of matter such as exotic baryons made of hyperons and A iso-
bars [1-5]; deconfined up, down, and strange quarks [6, 7]; color superconducting phases [8—10];
or Bose-Einstein condensates made of negatively charged pions or K~ mesons [11-15]. A
better understanding of the internal composition of these stars would shed light on many
areas of current interest, including various astrophysical phenomena such as core-collapse
supernovae [16] and binary star mergers [17], nuclear laboratory physics, QCD and relativistic
gravity, as well as the early Universe. A long-standing issue in experimental and theoretical
astrophysics is the determination of the equation of state (EOS) of matter within the cores of
neutron stars, which describes the underlying relationship between pressure P and energy den-
sity €. Theoretical EOS models make various assumptions regarding the state of matter within
neutron stars’ interiors, resulting in widely varying relationships between pressure and density.



The interiors of neutron stars are not available for direct observation. However, obser-
vational data from these stars, such as electromagnetic emission, is growing rapidly from
telescopes like the Chandra X-ray Observatory, the Neutron star Interior Composition Explorer
(NICER), and the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The star’s
emitted spectrum is influenced by macroscopic stellar properties such as mass and radius,
which are determined by the star’s underlying EOS. The mass and radius, paired with other
stellar parameters, control the emitted radiation, which when convoluted with the telescope
response, determines the observed spectra. Therefore, in principle, the EOS can be inferred
from observations of stellar spectra. In practice, crucial elements of the likelihood are not
tractable, preventing straightforward inference. For example, while the mass-radius relation
can be calculated from the EOS using the relativistic stellar structure equations (SSEs), the
equations cannot be trivially inverted [18-24]. The task is further complicated by the small
number of neutron star observations and the relatively large uncertainty of the individual
measurements. Extraction of the maximal information content, with robust uncertainties, is
therefore of paramount importance.

Recently, machine learning tools have demonstrated breakthroughs in data analysis in
the natural sciences [25], increasing the power of valuable data [26] while naturally propagating
uncertainties [27]. Applications in particle physics have used larger and deeper neural networks
powered by advances in hardware processing to tackle more complex and higher-dimensional
tasks [28, 29]. In astrophysical contexts such as regression of neutron star parameters where
the likelihood is not tractable and analytical inversion is not feasible, simulation-based
inference techniques [30] have been explored. For example, recent work from Fujimoto et
al. [31, 32] demonstrated regression of neutron star matter EOS from mass-radius pairs, where
networks are trained on samples of simulated stars and uncertainties are drawn from an
ad-hoc Gaussian model. Morawski [33] also performed regression from mass-radius pairs
to EOS assuming Gaussian uncertainty and attempted to reduce EOS parameterization
dependence. Soma et al. [34] regressed both EOS and mass-radius information through a set
of connected modes: density values are used to determine pressure values using a deep neural
network, and the regressed pressure values are then used to generate mass-radius pairs using
a generative deep learning model. Ferreira [35] instead regressed EOS from radius and tidal
deformation information using support vector machines (SVMs) and deep neural networks
(DNNs). Our recent work [36] demonstrated regression of EOS directly from simulated X-ray
spectra without collapsing to intermediate states of observable properties like mass and radius,
and where uncertainty due to unknown values of other stellar parameters is fully propagated.
This was the first demonstration that neural networks have the capacity to directly analyze
high-dimensional astrophysical data such as X-ray spectra.

Machine learning is, however, capable of more than regression. In this paper, we
introduce a novel approach to the inference of EOS parameters from neutron star X-ray
spectra, in which the likelihood is made tractable by replacing the intractable elements with
neural networks trained on samples of simulated stars. Rather than directly learning the
entire likelihood [37] in one step, we leverage our knowledge of the problem by replacing only
the crucial missing pieces, which focuses the learning task and allows the interpretation of
network outputs as physically meaningful quantities. The resulting machine-learning-derived
likelthood of observing a set of stellar spectra given EOS parameters allows for estimation of
the EOS parameters via Bayesian mazimum a posteriori and use of standard error estimation
techniques. The derivation of this machine-learning-derived likelihood is shown schematically
in figure 1.
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Figure 1. Schematic diagram depicting the evaluation of the likelihood of producing a set of observed
stellar spectra by comparing it to the predicted spectra along the mass-radius curve determined by
EOS parameters A1, A2. Each value of the EOS parameters determines a curve in the mass-radius
plane. Integrating along the curve, the probability of observing each star is evaluated as in figure 2.

This paper is outlined as follows. In section 2, we describe the physics of neutron star
interiors. Section 3 gives an introduction to the relevant machine learning techniques. We
describe the generation of our samples of simulated stars in section 4, and the strategy for
machine-learning-derived likelihoods in section 5. Sections 6 and 7 demonstrate the likelihood
calculation and extraction of parameter estimates for mass-radius information and EOS
parameters, respectively. Sections 8 and 9 present a discussion of the results and future
directions, respectively.

2 Background

Observation of neutron stars has long served as a way to place constraints on our knowledge of
superdense matter due to the theoretical connection between features deduced from observation
(such as gravitational mass and radius) and the underlying EOS. The theoretical connection
comes from the relativistic stellar structure equations, derived from Einstein’s field equations,
where the star’s internal structure is used to derive the stellar properties of a compact object.

For spherically symmetric, non-rotating stars comprised of isotropic material in hydro-
static equilibrium, the stellar structure is compactly summarized in the Tolman-Oppenheimer-
Volkoff (TOV) equation (in geometerized units G = ¢ = 1):

ar _(6+P)(m+47rr3P) (2.1)
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where m is the gravitational mass enclosed within a sphere of radius r, P is the pressure,
and € is the energy density. This equation creates a one-to-one map from the EOS to a
mass-radius relation [23], where the inverse mapping would provide constraints on the EOS
from mass and radius values. While inverting the relativistic SSEs has been demonstrated
to be numerically intractable, mass and radius values determined by observation provide
valuable constraints on EOS; observations of high-mass pulsars (such as PSR J0952-0607,




where M = 2.35 £ 0.17 M, [38]) have ruled out previously popular EOS models which failed
to predict masses above 2Mq.

Observation of neutron star emission has long served as a way to constrain mass and
radius for neutron stars (e.g. [39, 40]), which in turn places constraints on the nuclear
EOS. Some of the most precise constraints thus far come from observing thermal emission
from quiescent low-mass X-ray binaries (QLMXBs). These binary systems are identified in
well-studied globular clusters where distances, ages, and reddening are well-constrained [41].
Additionally, their low magnetic fields result in minimal effects on the radiation transport or
temperature distribution on the star’s surface [42-44|, making them particularly desirable for
placing strong constraints on neutron star structure.

Thermal emission from qLMXBs is observed with powerful telescopes such as NASA’s
Chandra X-ray Observatory, where high-resolution imaging and spectroscopy have provided
powerful insight into neutron star properties such as cooling [45, 46], mass and radius limits [42],
and binary mergers of exotic stars [47]. Chandra’s telescope contains a system of four pairs
of mirrors that focus incoming X-ray photons to the Advanced CCD Imaging Spectrometer
(ACIS), which measures the energy of each incoming X-ray. The observed spectrum then
determines neutron star bulk properties like mass and radius through spectral fitting, where
both the spectrum and corresponding instrument response are fit to an appropriate atmosphere
model, where the surface composition is known or can be determined by the X-ray spectrum.
An extensive list of such models exists in XSPEC [48], an X-ray spectral fitting package
distributed and maintained by the aegis of the GSFC High Energy Astrophysics Science
Archival Research Center (HEASARC). XSPEC is a state-of-the-art tool to analyze X-ray data
from Chandra and other spectrometers like NICER, Nustar, and XMM-Newton — making it
a valuable resource for inference of neutron star properties.

3 Machine learning

Machine learning is a branch of computer science, and the main component of today’s artificial
intelligence, where computers learn to compute useful functions from data. In deep learning,
a modern re-branding of neural networks and today’s major branch of machine learning,
networks of simple neurons connected by adjustable synaptic weights are used to implement
flexible classes of functions. In a typical case, the parameters of such models, i.e. the synaptic
weights, are adjusted incrementally from the training data via a stochastic gradient descent
process in order to minimize some error function. For instance, in the case of a regression
problem, neural networks can be trained to minimize the standard least-squared error over
the training data. This can be viewed as a generalization of standard linear regression, where
the linear model is replaced by a more complex, non-linear, neural network model. The
least-squares error can be viewed as the negative log-likelihood of the data under a Gaussian
noise model. The neural network learns to predict the parameters of the negative log-likelihood
function, i.e. the mean of the Gaussian distribution in the standard regression framework.
Machine learning, and in particular deep learning, have many applications in science [25]
and have greatly benefited from the increase in computing power over the last few decades,
especially in the form of GPUs (Graphical Processing Units) which are well suited for the
matrix-vector multiplications — the computational workhorse of neural networks. Deep
learning methods can flexibly handle data sets, models, and dimensions that range from
very small to very large. For instance, deep learning models with millions, or even billions,
of adjustable parameters, are not uncommon. These methods can handle and leverage raw



data, without the need for pre-processing using heuristic or manual simplifications, which
often discard valuable information. In physics applications, this often leads to significant
performance improvements in terms of accuracy, detection rates, and so forth (e.g. [26, 49, 50]).
In the rest of this work, we use deep learning methods for regression to deterministically
compute the parameters of complex functions needed to calculate likelihoods.

4 Training data

Samples of simulated stars are used both to train and evaluate network performance. The
samples used in these studies were originally produced for ref. [36]; we use the identical
samples here to allow direct comparison to previous work. Each simulated star is described by
two parameters of interest and three additional physical stellar properties. The parameters of
interest are mass M and radius R, derived from EOS variations using the stellar structure
equations. The other three quantities, deemed nuisance parameters, affect the stellar spectrum
but are not related to the EOS: the effective temperature of the star’s surface, T.g, the
distance to the star, d, and the hydrogen column, Ny which parameterizes the reddening of
the spectrum by the interstellar medium. All five parameters determine the simulated X-ray
spectra, generated using XSPEC. Details of each data generation step are outlined below.

4.1 (Generation of equation of state

As described in ref. [36], the EOS models used to generate many simulated neutron stars are
variations of the relativistic, non-linear mean-field model GM1L [51]. The parameterization
of GM1L used in these studies accounts only for protons and neutrons; the corresponding
saturation properties of this parametrization are shown in table 1 of ref. [36], which follow
current constraints from nuclear experiments and astrophysical observations [52]. In order to
represent the EOS in a compact fashion and limit parameters of interest, we represent GM1L
in a parametric representation based on spectral fits; the process for constructing such fits is
outlined in detail in refs. [53] and [21].

As in ref. [36], the parametric representation of GM1L is given by the coefficients of
order two spectral expansion: A; and As. We randomly vary the two original coefficients to
create 10 unique EOS variations in order to generate the many models needed for training
the networks discussed below. Each EOS variation was then used to generate a mass-radius
relation using the TOV equation (2.1). From each mass-radius relation, 100 (M, R) pairs
whose mass falls in the physical range of neutron star masses (1 to 3 My) are selected for
training and validation.

4.2 Modeling spectra

Generation of a simulated neutron star X-ray spectrum requires the stellar mass and radius,
generated from a particular EOS model as described above, as well as the three nuisance
parameters. Beyond spectral fitting, the XSPEC program [48] can create simulated spectra via
the fakeit command. The command requires a specified theoretical model and telescope
response matrix. As described in greater detail in ref. [36], the theoretical hydrogen atmosphere
model NSATMOS [19] was used, paired with the Chandra telescope response specified in ref. [19]
which describes the instrument response and telescope effective area.



Nuis. Param. True Tight Loose

Distance exact 5%  20%
Hydrogen Column Ny exact  30%  50%
log(Tog) exact £0.1  +£0.2

Table 1. Description of “true”, “tight”, and “loose” nuisance parameter (NP) scenarios. Shown are
the width of each Gaussian distribution representing the prior knowledge of each NP. For distance
and Ny, width is relative; for log(Teg), it is absolute. See text for details and references.

4.3 Nuisance parameters

The NSATMOS model implemented in XSPEC requires five inputs for each simulated spectrum.
The first two, gravitational mass M in units of M ® and radius R in units of kilometers, are
taken from mass-radius relations from the GM1L EOS variations. The remaining three param-
eters are the effective temperature of the star’s surface Teg, the distance to the star, d, and the
hydrogen column density, Ng. These three additional parameters are referred to as nuisance
parameters (NPs) in ref. [36] and are given values drawn from reasonable physical limits.

To determine the physical limits of the distance to the star and the hydrogen column
density Ny, we turn to table 1 in ref. [40]. The distances typically range between 2 and 10
kpc, and hydrogen columns lie between 0.2 and 5 x 10! em™2. From table 3 in ref. [54],
effective temperatures at the surface typically lie between 50 and 200 eV, or from 6 x 10° and
2.4 x 10% K, with temperatures in the core increasing by a few orders of magnitude.

Examples of generated X-ray spectra are shown in ref. [36]. The three NPs, which we
will refer collectively to as v, directly impact the simulated spectra and the uncertainty in
the spectral fitting process. In order to propagate the uncertainty from these parameters
and gauge our networks’ sensitivity to each parameter, we define three example scenarios of
uncertainties: “true”, “tight”, and “loose”. The three scenarios describe the quality of prior
information on the NP values for each star.

In the “true” scenario, the NPs are set to the true value chosen from the physical range
used to generate the spectra, such that the NP prior is essentially a delta function. In the
“tight” scenario, the uncertainty is described as a narrow Gaussian for each NP, with distance
having a width of 5%, hydrogen column having a width of 30%, and log(Teg) having a width
of 0.1. In the “loose” scenario, the uncertainties are described by a wider Gaussian, with
distance having a width of 20%, hydrogen column having a width of 50%, and log(Tes) having
a width of 0.2. Table 1 shows the width of the prior information of the three NPs for the
three uncertainty scenarios.

5 Machine-learning derived likelihood calculation

If the likelihood p(z|f) of observing some data x for given values of the theoretical model
parameters 6 were known, estimating the value of 6 for a given x would be a straightforward
task. In a Bayesian approach, one would use mazimum a posteriori (MAP) to find 0, the
value of  which maximizes the product of the likelihood and the prior p(6).

In the case of neutron star EOS estimation, the likelihood p(S|A1, A2) of observing
a set of stellar spectra S for a given choice of EOS parameters A1, Ao is not tractable.
Instead, simulation-based inference [30] techniques often circumvent the need for a closed-form
likelihood by approximating p(S|A\1, A2) using density estimation with simulated samples.
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But accurately estimating the density in high-dimensional spaces such as those for stellar
spectra, with dimensionality of ~ (O(1000), would require prohibitively large samples of
simulated events. Instead, we use machine learning to estimate the likelihood. But rather
than estimating the entire likelihood in one step, our machine-learning-derived likelihood
calculation focuses the statistical power where it is most needed for a given set of observations
by combining the available analytic components with neural networks to replace the intractable
components.

For the estimation of parameters such as EOS or mass and radius, many elements of the
likelihood calculation are known, such as the Poisson fluctuations within each energy bin of
a stellar spectrum. However, there are two elements without closed-form expressions that
require machine-learning assistance. We overview those intractable components here briefly
and provide more detail below.

The first missing piece is a prediction for the expected photon rates observed in a
telescope given stellar parameters M and R and nuisance parameters v. Below, we train
a neural network to estimate this quantity and demonstrate its application by doing MAP
estimates of M and R, in which we integrate over the nuisance parameters v.

The second missing piece is a prediction for the mass-radius values allowed by given
EOS parameters Aq, A2. We train a neural network to output the allowed radius for a given
stellar mass when provided with the EOS parameters. This allows integration over the M — R
curve defined by the EOS.

Together, these two machine-learned elements allow for a tractable calculation of the
likelihood p(S|\1, A2) and provide a MAP estimate of A1, A2 for a given set of spectra S. We
describe each piece in turn below.

6 Stellar mass and radius inference

The mass and radius of a neutron star can be estimated from its spectrum s if one can
calculate and maximize p(s|M, R)p(M, R) for a fixed s. This requires access to p(s|M, R),
which depends on p(s|M, R, v), the likelihood to produce this spectrum s given the full set of



stellar parameters including the nuisance parameters v:
P, R) = [ dv plsIM, R, v) p(),

If the spectra consists of a set of energy bins of telescope photon counts,

s=(N{,NJ,...,N} )

Mbins /"’
then the joint likelihood p(s|M, R, v) over the bins can be written as

Mbins

p(s|M,R,v) = H Pois(N <,MJ (M, R,v)),

where f1; is the expected number (va) of photons in bin j of n bins:

p(M, R,v) = ((NY),(N3), ..., (N2, ..)

determined by M, R,v via complex physics of the stellar emission model as well as the
telescope response. In principle, for this specific scenario, this function is contained within
XSPEC, but is not exposed to the user in a convenient fashion which would allow for a rapid
evaluation of many points, as needed for this application. More generally, one may want to
learn a function in scenarios where no function is available, or where the training sample
contains examples generated from a mixture of models where no single simple function can
describe all samples.

When we do not have access to a simple expression for p(M, R, v), it is possible to train
a neural network to learn a function f[M, R, v|

Tlbins

e 7 odt 777 dt

SR (dN] ANy AN} . )

such that (M, R,v) can be estimated from f(M, R, v) scaled by the observation time At,
~ f[M, R, v]At.

The likelihood p(s|M, R, v) can then be estimated as

Nbins

p(s|M, R,v) = H Pois(NV ~,,u] fIM, R, v];At),

where the final likelihood can be obtained by marginalizing over the nuisance parameters:

Nbins

p(s|M, R) /dl/p (s|M, R, v) /du H Pois(N7, j; = f[M, R, v];ADp(v).  (6.1)

This estimate allows for a scan of the M, R plane for the values which maximize
p(s|M, R)p(M, R) to find the MAP estimate for (M, R) given a fixed s. Schematically, this
process is shown in figure 2.



6.1 Learning the model f for stellar spectra

The estimated likelihood requires learning a function f[M, R, v| which produces the expected
stellar spectrum in each bin. This function is modeled by a deep neural network with five
inputs (M, R, and the three components of v: effective temperature, distance, and Ny) and
250 outputs, one for each of the spectral bins.

The network architecture includes two input branches, one to process the mass and
radius, and another to process the nuisance parameters. Each branch contains a series of
nine layers, with 2048 nodes and leaky ReLLU activation, that process its inputs in isolation.
Following these initial layers, the output from the branches is combined together, forming a
single volume with all information. This grouping is then passed to another successive set
of nine layers which produce the generated spectra. The choice of hyperparameters has a
significant impact on performance of this network. A complete list of hyperparameters tried
is given in appendix; the architecture used for model f was the configuration with the best
performance on the validation set.

Generating the spectra is formulated as a supervised learning problem, where the
network learns to minimize the error between the true spectra and its predictions for a set
of simulated examples generated by XSPEC. The weights are updated with gradient descent
via backpropagation. The Huber loss function is used, which is a standard loss function for
regression robust to outliers, and the Adam optimizer computes gradients and schedules the
backward passes.

Figure 3 shows several examples of generated spectra. Each subplot contains generated
results using various values of mass, radius, and nuisance parameters. The predictions are
shown with their corresponding version from XSPEC. The predictions track the XSPEC values
remarkably well across a range of parameter values. In general, we notice a slight overprediction
by the network; below, we estimate the potential bias due to this overprediction and find it
to be negligible compared to statistical uncertainties and other systematic uncertainties.

6.2 Results

The machine-learning-derived likelihood is tractable, allowing for a scan of p(s|M, R) for
individual stars. Figure 4 shows examples of two individual simulated stars under the three
nuisance parameter scenarios.

The likelihood can then be used to produce estimated values of neutron star mass
and radius for a given spectrum, after marginalizing over the nuisance parameters. The
mass-radius plane is scanned using adaptive optimization to find values that maximize the
product of the likelihood and the prior.

We assess the performance of this method to produce likelihood estimates,
ML-Likelihoody g, by calculating the residual between the true values of the mass and
radius and the estimates produced by our method. As benchmarks, we compare the residuals
to those generated by XSPEC itself, which has access to the true likelihood used to generate
the simulated samples, as well as a regression-based method, MR_ Net, described in ref. [36].
Figure 5 and table 2 shows a comparison of the results.

It is striking that ML-Likelihoody g outperforms MR _Net dramatically, despite being
trained on the same dataset. ML-Likelihoody; r benefits from the physics knowledge encoded
in the approximate likelihood, which requires ML solutions only for a specific sub-task,
rather than having to blindly learn the entire problem, as MR _Net must. ML-Likelihoody r
performs essentially as well as XSPEC, even having smaller residuals when nuisance parameters
have the most uncertainty, despite not having access to the explicit likelihood used to generate
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Figure 3. Comparison of neutron star X-ray spectra predictions (dashed) from our network f[M, R, v]

described in the text, as compared to training data generated by XSPEC (solid). Each pane shows the
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expected rate of photons (dil\il ) in Chandra per energy bin, for variations of the parameters of interest

(mass M, radius R) as well as for variations of the nuisance parameters v (ng, log(Tog), distance).

the data, as XSPEC does. Note that the performance comparison here highlights a practical
difference between our method and use of XSPEC, rather than a principled difference in the
methods. That is, our method of replacing the difficult calculational step with a learned
ML model allows for convenient and rapid evaluation of the likelihood over many values of
the nuisance parameters, enabling us to marginalize over them, which explains the improved
relative performance. While in principle one could perform the same operation with XSPEC, its
lack of a convenient programmable interface makes this impractical. The practical distinction
is crucial, however, as it allows for greater general flexibility, such as interpolation across
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Figure 4. Scans of the likelihood for two example stellar spectra s (left, right) versus stellar mass
and radius. Top demonstrates the ideal nuisance parameter (NP) conditions where the NPs are fixed
to their true values. For the same simulated observed spectra, center shows a more realistic “tight”
scenario, and bottom shows a “loose” scenario in which the NPs are not well constrained by priors. In
the “loose” and “tight” scenarios, dependence on the nuisance parameters has been integrated out as
described in the text.

several models, or in application to the broader EOS inference problem described below, where
likelihoods are not just hidden behind inconvenient interfaces, but completely unavailable.

7 Equation of state inference

The ultimate goal is to estimate the EOS parameters (A, \2) given a set of spectra
S = (51,82 -+, Snga)- In principle, this would be straightforward if one could evaluate
p(S|A1, A2)p(A1, A2), which would allow for maximization to find an estimate for Aj, Ay for a
fixed S.

We begin with the assumption that the EOS parameters have a uniform prior within
their physical boundaries of \; € [4.75,5.25], Ay € —[1.85, —2.05] (see figure 3 of ref. [36]).
The remaining step is evaluating p(S|A1, A2).
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Figure 5. Performance of our estimation of neutron star mass (left) and radius (right) using an
approximate likelihood which incorporates neural networks, ML-Likelihoodp g, in comparison to the
performance of a pure regression network, MR_ Net [36] and the XSPEC tool. Shown is the residual, the
difference between the true and predicted values, for three scenarios of nuisance parameter uncertainties.
In the “true” case, the NPs are fixed to their true values; in the “tight” and “loose” cases, they are
drawn from narrow or wide priors, respectively; see text for details.

First we express the probability over the entire set S as the joint probability for each
star s;:

Nstars

p(SIA1, A2) = ] p(silA1, A2).

The obstacle is that we do not know how to evaluate p(s|A1, A2), only p(s|M, R), which
depends on stellar parameters M and R. Linking these expressions is not trivial, as the EOS
parameters A1, Ao do not uniquely determine stellar parameters M and R, instead they only
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Nuis. Mass Radius

Method Params W o I o
ML-Likelihoody g~ True 0.11 0.47 0.28 1.43
XSPEC True —0.01 0.50 0.23 1.44
MR _ Net True —-0.14 0.93 —0.7 2.80
ML-Likelihoody g Tight 0.15 0.50 0.57 1.87
XSPEC Tight 0.06 0.73 0.24 2.61
MR, Net Tight 0.17 1.06 0.06 3.52
ML-Likelihoody g~ Loose 0.15 0.58 091 242
XSPEC Loose 0.18 0.86 —0.15 4.32
MR Net Loose 0.28 1.29 0.14 4.93

Table 2. Performance of our estimation of neutron star mass (left) and radius (right) using an
approximate likelihood which incorporates neural networks, ML-Likelihoody g, in comparison to the
performance of a pure regression network, MR_ Net [36] and the XSPEC tool. Shown are the mean (u)
and standard deviation (o) of the residual distributions under three scenarios of nuisance parameter
uncertainties. In the “true” case, the NPs are fixed to their true values; in the “tight” and “loose”
cases, they are drawn from narrow or wide priors, respectively; see text for details.

determine the M-R relation. That is, each point in (A1, A\2) space specifies a curve in M-R
space. The solution is to integrate over the M-R curve allowed by the EOS parameters A1, As.
This is most directly accomplished by expressing the integral over the mass-radius plane,
constrained by a delta function which traces out the M-R curve determined by the EOS
parameters Aq, Ao:

plslAi Aa) = [ dMAR p(O, I Ap(s|M, R)

where p(M, R|\1, \2) describes the allowed M-R relation given the EOS specified by A1, Ag,
as

p(M, R|A1, A2) = 6(ha[M] — R) p(M|A1, A2),

where h)[M] — R is a function that gives the allowed value of R for a value of M, determined
by the EOS parameters A1, A2. The function hy[M] encodes all of the physics which translates
the EOS into stellar mass and radius, and is not available analytically or tractable numerically.
It is possible, however, to train a neural network to learn this function, as we do below.
Assuming hy[M] is available, we choose to integrate over mass, as each mass is mapped to a
unique R; the same is not true for scanning in R, see figure 6.

The delta function reduces the double integral in M and R to a single integral over mass:

Pl de) = [ dM p(MIN.Ao) p(6lM, R = ha[M))

where the range of the mass integral is limited to the physical region, from 1.2Mg to
1.6 — 3.25 M, depending on the radius, see figure 6. This allows us to write an expression for
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the joint probability over the set of stars:
p(SIA, x2) = ] /dMi p(Mi| A1, A2) p(si| My, Ri = ha[M;]).

We have now expressed the likelihood p(S|A1, A2) in terms of the likelihood p(s|M, R), which
we previously learned to calculate. The equation for p(s|M, R) now allows for the expression
of a joint likelihood over the stars and the bins:

Ls(A1, A2) = p(S[A1, A2)
Nstars Mbins

=] /dMi p(M|)\1,>\2)/dV [T Pois(NJ, pij (M;, Ri = ha[M], v)p(v),
( J

where we can replace each of the y;; as we did above with f[M, R, v]At

Ls(A1, A2) = p(S|A1, A2) (7.1)
Nstars TMbins

=11 / dM; p(M|X1, ) / dv [] Pois(N, pij = f[Mi, ha[My], v];At)p(v).
i J

This expression can be evaluated, assuming one can learn a function hy[M] — R. The
determination of the likelihood Lg(A1, A2) is shown schematically in figure 1.

7.1 Learning the model h)[M] for stellar radius

The approximate likelihood above requires learning a function hy[M] which estimates the
stellar radius for a given stellar mass as determined by the EOS parameters A1, Ao. Note
that one could equivalently estimate the mass from the radius, but this has the additional
complication of degenerate outputs for some radii, see figure 6. It is important here to note
that model hy[M] is trained on M-R relations created by equations of state that do not feature
a phase transition; parameterizing the M-R relation as a function of R = h)[M| may miss
details stemming from more exotic features, like those caused by a strong, first-order phase
transition, in the EOS.

We model hy[M] with a deep neural network comprising 10 hidden layers with 32 nodes
each and ReLU activation. The output layer is a single node with linear activation, which is
standard for regression. The number of hidden layers, their widths, and activation functions
were optimized for the functionality of hy[M]; the relatively small width of 32 nodes and ReL.U
activation were found to perform well. The network was trained with Mean Squared Error
(MSE) loss and the Adam optimizer. Figure 6 demonstrates how the network hy[M;] — R
performs for a few example values of the EOS parameters A. Generation of the training
data as described above required approximately 24 hours of CPU time for 10° stars; in
comparison, evaluation of the network hy[M] generates 10% stellar radii in 400 ms, a relative
speed enhancement of 10°.

7.2 Results

The two networks that model the missing functions f and A allow for an approximate evaluation
of the likelihood, eq. (7.1) as a function of the EOS parameters. Figure 7 shows examples of
two individual sets of simulated stars under the three nuisance parameter scenarios.
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Figure 6. Relationship between neutron star mass and radius, as determined by equation of state
parameters A1, Ao. Each color represents a single choice of EOS parameters, which determine a curve
in the mass-radius plane. Individual calculations as described in the text are shown (crosses), as
compared with the output of a neural network function hy[M] (solid line), which estimates the radius
corresponding to an input value of M as determined by the EOS parameters.

To estimate the EOS parameters from a fixed set of stellar spectra, the likelihood is
maximized via a course scan over EOS parameter space followed by the use of an optimization
algorithm for a more refined location of the optimal EOS parameters. Each evaluation of the
likelihood involves nested loops over the stars, an integral over possible masses, and a loop
over the spectral bins. Performance of ML-Likelihoodgog and comparison with benchmarks
are shown in figure 8 and table 3. We note that the data used in evaluations are generated via
XSPEC, not from the models f and h, allowing for a test of the fidelity of the machine-learned
models. Experiments in which simulated spectra are generated using the models f and h
show equivalent performance, indicating that any bias due to mis-estimation by f or A is

negligible in this context.

8 Discussion

The results above demonstrate that machine-learning-derived likelihoods are useful statistical
tools, allowing for traditional inference such as parameter estimation for quantities of interest
(eg stellar M and R) as well as profiling over nuisance parameters (eg stellar distances and
temperatures).

In the case of M,R-estimation for an individual star, the performance of the ML-
Likelihoody,r method matches the performance of XSPEC when the nuisance parameters
are known. This is an important validation of the technique, as the simulated samples are
generated by XSPEC and so its internal likelihood estimation represents something of an upper
bound on possible performance. Though XSPEC can provide point estimates and other analysis,
ML-Likelihoody r in this case is valuable as a building block for further analysis, as XSPEC
does not provide an efficient interface to its internal calculations. For example, in the cases
where nuisance parameters weaken the inference, ML-Likelihoody r is able to improve on
XSPEC’s performance by marginalizing over the stellar nuisance parameters. Given access to
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Figure 7. Scans of the likelihood for two example sets of stellar spectra s (left, right) versus EOS
parameters A; and As. Top demonstrates the ideal nuisance parameter (NP) conditions where the
NPs are fixed to their true values. For the same simulated observed spectra, the center shows a more
realistic “tight” scenario, and the bottom shows a “loose” scenario in which the NPs are not well
constrained by priors. In the “loose” and “tight” scenarios, dependence on the nuisance parameters
has been integrated out as described in the text.

the full likelihood, one could also choose to profile over the nuisance parameters. In addition,
while XSPEC’s inference is linked to a particular theoretical model, ML-Likelihoody; g can be
trained on a variety or mixture of models, providing a smooth interpolation between otherwise
distinct conceptual approaches [55].

The M, R-likelihood estimation is a building block toward the estimation of EOS
parameters for sets of stars. In this case, as well, the likelihood provides for reliable inference
of the EOS parameters, as demonstrated by the performance of ML-Likelihoodgps. The
residuals in this case again are narrower than the pure regression approach, nearly matching
the performance of XSPEC in the true case, and exceeding its unmarginalized estimates in the
realistic case where nuisance parameter uncertainty is important.

Our method uses machine learning to enable what is typically termed a forward process,
in that it aids the calculation of the likelihood of experimental data from the parameters,
rather than backward inference of the parameters from the data. In this sense, it can be
considered a fast and flexible simulation tool. The neural networks developed for this work
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Figure 8. Performance of our estimation of neutron star EOS parameters A; (left) and Ay (right) using
an approximate likelihood that incorporates a neural network, ML-Likelihoodgogs, in comparison to the
performance of a spectra-to-EOS regression network and network which regresses EOS parameters from
M, R values estimated by XSPEC, both from ref. [36]. Shown are the residual distributions, the difference
between the true and predicted values, under three scenarios of nuisance parameter uncertainties. See
table 3 for quantitative analysis. In the “true” case, the NPs are fixed to their true values; in the
“tight” and “loose” cases, they are drawn from narrow or wide priors, respectively; see text for details.

effectively enable end-to-end, fast and convenient simulation of neutron star spectra for a range
of EOS parameters and nuisance parameters, including the intermediate step of generating
plausible neutron star properties (mass and radius) for a given set of EOS parameters. In the
case where the true likelihood exists but is not made conveniently accessible, our approach
provides a powerful and flexible new interface, even without speed enhancements. In the
more general case, such as for EOS inference, the approach additionally allows for more rapid
generation of simulated stellar masses and radii for specific EOS parameters without solving
the complex sets of equations underling the physical model.
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A A9 Combined

Method Nuis. Params. 7 o 7 o o
ML-Likelihoodgosg True —0.02 0.066 0.01 0.070 0.096
NN(Spectra) True —0.02 0.066 0.01 0.075 0.099
NN(M, R via XSPEC) True —0.03 0.065 0.01 0.055 0.085
ML-Likelihoodgog Tight —0.02 0.078 0.03 0.081 0.112
NN(Spectra) Tight 0.02 0.085 —0.02 0.077 0.115
NN(M, R via XSPEC) Tight —0.03 0.081 0.01 0.056 0.098
ML-Likelihoodgog Loose —0.04 0.089 0.03 0.081 0.120
NN(Spectra) Loose —0.03 0.131 —0.01 0.078 0.152
NN(M, R via XSPEC) Loose —0.03 0.123 0.01 0.058 0.136

Table 3. Performance of our estimation of neutron star EOS parameters A; (left) and Ap (right) using
an approximate likelihood that incorporates a neural network, ML-Likelihoodgog, in comparison to
the performance of a spectra-to-EOS regression network and network which regresses EOS parameters
from M, R values estimated by XSPEC, both from ref. [36]. Shown are the mean (i) and standard
deviation (o) of the residual distributions under three scenarios of nuisance parameter uncertainties.
See figure 8 for distributions. In the “true” case, the NPs are fixed to their true values; in the “tight”
and “loose” cases, they are drawn from narrow or wide priors, respectively; see text for details.

Once released, this framework will serve as a convenient simulation tool that can be
used by the larger machine learning research community to generate neutron star samples
without the expert knowledge required to run XSPEC or solve the TOV equations, and spur
further innovation, such as in simulator-based inference techniques that can handle a large
number of nuisance parameters, or to setup ML challenges where participants are given access
to the simulator.

9 Conclusion

In this work, we demonstrate an alternative approach to deducing neutron star mass, radius,
and EOS from simulated stellar X-ray spectra using machine learning. The alternative
approach employs a technique novel to neutron star astrophysics, machine-learning-derived
likelihoods, in which intractable elements of the calculation are replaced with machine-learned
functions. This allows for an approximate likelihood calculation with increased interpretability.
Our forward neural network model allows us to predict the X-ray spectra given a value of
nuisance parameters, the equation of state parameters, and the neutron star mass. Forward
modeling of this kind demonstrates how these networks are interpretable, testable, and
often with the assumptions being explicit rather than implicit when compared to inverse
models [40, 56]. The ML-Likelihoodgog model outperforms our previous best-performing
regression model, demonstrating the power of such a technique for point estimation. Note that
it additionally provides access to the full likelihood, which can inform uncertainty estimation.

While the studies shown in this work demonstrate the power of the method to provide a
tractable likelihood for stellar spectra generated from a specific model, the natural ability of
neural networks to interpolate allows for the treatment of inherent model uncertainties, by
training on samples with mixed or varying models [27].
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The machine learning-driven calculations lend themselves to various future directions. In
terms of training data, EOS models with different parametrization can be tested as well as using
a different response matrix (e.g. from NuStar, NICER, or XMM-Newton as described in [57])
in XSPEC to generate simulated X-ray spectra. In addition, this technique can be rapidly
applied to the analysis of X-ray spectra from recent observations. The networks developed for
this work will become a convenient tool for fast simulation of neutron star spectra which can
be run without the expert knowledge required to run XSPEC or to solve the TOV equations.
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A Hyperparameter optimization

This section describes the hyperparameter optimization methods for model f, which generates
simulated X-ray spectra from mass, radius, and the nuisance parameters v.

The network has two input branches, the first to process the mass and radius values and
the second to process v. The output of the two branches is combined together and processed
through the remaining layers to predict the X-ray spectra. In both the input branches as well
as the secondary portion of the network, we trained models with random combinations of the
following parameters:

1. Number of layers: one to fifteen,
Number of hidden nodes: 64 to 2048,
Dropout: 0 to 1,

Learning rate: 0.0001 to 0.005,
Activation functions,

Skip connections,

e o R

Loss functions: mean squared error (MSE), mean absolute percentage error (MAPE),
and the Huber loss function,

8. Data scalers for both the input and the output: zero-mean, log, min-max, and standard
scaler. The scalers preprocess the data before it enters the network, meaning scaled
input values (mass, radius, and v) with a scaled output (spectra) are used for training,.
After training, the scaling procedure is inverted for the predicted spectra to produce
meaningful values.

The hyperparameters chosen were the combination that had the best performance on
the validation data set, described in section 5.
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